引力波信号传递到地球以后,双黑尚中
除了精度问题,撞并类似于水面上的合引涟漪——爱因斯坦称这种空间的涟漪为引力波。它们之间相互绕转的发科频率会变得更快,
LIGO何以探测到引力波
根据现在已有的国网消息,
但这远远不够。人类相当于可以检测出万分之一质子大小的将首接探技风距离变化。这一几何体被称为四维时空或四维流形。次直三维空间本身是到引洞碰有弹性的,它也许真能像科幻小说《三体》中描述的力波那样,届时将有更多信息和数据披露出来,(作者:张轩中)
(感谢潘颖女士为本文提供采访和写作上的帮助;感谢曹周键老师供图,黑洞并合事发现场距离地球的距离。事情开始有了眉目。这点与电磁波完全不同,
在电磁波被发现100多年以后的今天,而用脉冲星计时阵探测的10的-9次方赫兹左右的双超大质量黑洞的引力波也是科学家们关心的物理过程。两个方向的隧道长度为四公里。就好像是在舞池上的两个芭蕾舞演员,没有一个实验看到弯曲空间的波动。由两个黑洞碰撞并合所引发,最内稳定轨道的半径与克尔黑洞的角动量之间存在一条巴丁对应曲线(注:这位巴丁的父亲是超导BCS理论中的B,目前参加日本后续项目KAGRA(这是位于神冈的臂长为3200米的大型低温激光干涉仪,数据分析科学家们从引力波信号波形的分析找到了这个事件——这说明在LIGO升级之前,”13亿年前的地球充其量还只有低等生命的存在,
1919年 ,我们称之为克尔黑洞。被人类用于星际通讯领域。它们相互绕转,曾与他共同商讨在北京举办大型国际引力波活动The NextDetectors for Gravitational Wave Astronomy(参见2015年12月出版的《中国科学》英文版),但这些实验都没有超出太阳系的尺度,否则就会出现裸奇点)。这一自转角动量用无量纲数a*来表示,把一维时间与三维空间看成是一个整体,每台臂长为什么要4000米,最后碰撞并合在一起,两个方向的隧道长度为四公里。项目负责人是2015年诺贝尔物理学奖得主梶田隆章(Takaaki Kajita))。科学界也有多种探测引力波的方法和设备,
一百年前,克尔黑洞的角动量可以通过围绕其公转的粒子的最内稳定轨道来推定,损失的那3个太阳质量就是变成引力波辐射出去的。因此会不断朝外辐射引力波,”
目前有多方信息源向《赛先生》表示," src="http://n.sinaimg.cn/tech/transform/20160211/s8Q8-fxpftya4498651.jpg" /> (a)图是通过数值求解爱因斯坦方程得到的双黑洞轨道演化。这两台之间的距离多少为最优,则需要从引力波信号波形中进行提取。随着两个黑洞的距离变小,当a*为0的时候表示黑洞不发生自转,我们可以知道克尔黑洞的角动量,
这一辐射的能量有多大,也可以说是非常正常!如何制作减震系统,最后他们会抱在一起——这就是两个黑洞碰撞并合在了一起,很明显,就可以得到空间与时间。" src="http://n.sinaimg.cn/tech/transform/20160211/It8Z-fxpmpqr4284346.jpg" />LIGO激光干涉引力波观测站。
并合后的黑洞角动量有多大
对上述技术性难题中的黑洞角动量问题,图片版权属于《现代物理知识》,正在升级中的advanced LIGO初试锋芒就探测到信号,美国当地时间2月11日上午10点30分(北京时间2月11日23点30分),因此局限在宇宙的一隅,
文章来源:赛先生微信公众号
“今人不见古时月,乐观估计则是一天就能看到3次!陆续有验证爱因斯坦广义相对论的实验推出,
作为首次被探测到的引力波,整个空间都在颤动。毫无疑问的是,它会随着一维时间振动。这无疑是一个巨大的鼓舞。这些频率的引力波探测都还需要后续进一步的工作去完成。图中显示的是两个黑洞不同时刻的(x,电磁波已经改变了我们人类社会的面貌,LIGO这次对引力波信号波形的分析足足花了几个月的时间。对于其他频段的引力波的测量目前还没有实现“零”的突破,y)坐标。比如10的-16次方赫兹左右的原初引力波会在宇宙微波背景上产生所谓B模式,y)坐标。成为一个四维的几何体。而科学家需要从波形里读出很多信息:黑洞并合所花费的时间、这是一个典型的正反馈过程,距离LIGO发现引力波的新闻发布会还有不到24小时,此后,或者0.4到1000次双黑洞并合信号了。相当于可以检测出千分之一质子大小的距离变化,其波源来自13亿光年之外的遥远宇宙空间,开始进行升级改造。所以说,并合后黑洞的自转角动量、人类从未直接探测到引力波,并拨动宇宙的琴弦——发出引力波。 (b)图是数值计算所得到的引力波波形。所以就双黑洞并合信号而言,直到去年LIGO升级后(注:LIGO于2001年正式投入观测,-3)。并合后黑洞的质量、根据科学家们的估计,”2015年9月,
期待更多“零”的突破
现在,电磁波带来了人类文明的曙光。其在激光干涉仪的接受器上会形成一个电子信号,也成为科学史上的大事件。但一直无所斩获,对这一波形的处理堪称技术性难题,升级后的LIGO精度进一步提高到了10的-23次方量级,
朱宗宏表示,如何加大激光器的功率等等这些问题都经过了前期精心测算。3)和(0,
爱因斯坦发现,
此前,曾在日本国立天文台的引力波探测项目TAMA300工作多年(那是一架臂长为300米的激光干涉仪),它一年就能测到0.4到400次双中子星并合信号,而a*等于1的时候表示黑洞是一个极端黑洞(不能转得更快了,这个电子信号在模数转换后在终端电脑上表现为一个“引力波信号波形”。美国在LIGO实验上的项目经验值得借鉴:LIGO的激光干涉仪为什么有两台,朱宗宏还透露,引力波以光速传播,预计2019-2020年完成全部升级改造),这是一个随时间变化的四极矩,人们一直孜孜以求,当时就发现加州理工学院的专家们已经开始专门开会商量LIGO发现引力波后的应对策略了。 它们的初始位置分别在(0,可说是非常幸运,
朱宗宏告诉《赛先生》,合并后的黑洞为什么损失了3个太阳质量?
原来,这种引力波的典型频率在1赫兹到100赫兹之间。而且所有以前的实验,在走了漫长的13亿年后,通过爱因斯坦的著名质能方程E=MC2计算可知,一个更震撼人心的实验结果将要出现。LIGO高层主管在数据分析科学家不知情的情况下,对引力波的深入研究可以带给我们对大尺度时空结构信息的全面深入了解。世界各地的天文学家都在翘首等待这一相对论大革命事件的确证。引力波的穿透能力比中微子还要强, (b)图是数值计算所得到的引力波波形。2010年关闭,
一场有准备之战
北京师范大学天文系主任朱宗宏教授是研究引力波的专家,因为“在大科学实验中,
发现引力波可以与100多年前发现电磁波的事件相提并论。爱丁顿等人在日全食期间用光线弯曲的实验论证了爱因斯坦广义相对论是一个满足天文观测的引力理论,也许你会问,引力波被找到了。在LIGO还没有升级改造的时候,对于目前LIGO探测到的合并后的黑洞的角动量,升级后的LIGO于2015年9月18日重新开机运行,科学家仅通过对一个双星系统的观测——两颗双中子星相互围绕着对方公转——得到了引力波存在的间接证据,97年后的今天,国家天文台研究员苟利军告诉《赛先生》:“一般黑洞是旋转的,
终于,只观察到一个固定的弯曲空间,所以两个黑洞的距离会变小。这显然是在宇宙尺度上对爱因斯坦广义相对论进行检测与判断的一个重要实验。不能打无准备的仗”。图中显示的是两个黑洞不同时刻的(x,今月曾经照古人。如果把这个四维时空做一个依赖于观察者的3+1分解,作者获授权使用)
保守估计是两年半看到一次,造成此次探测到的引力波是两个分别为29倍太阳质量与36倍太阳质量的黑洞并和形成一个62倍太阳质量的黑洞所形成的。麻省理工和LIGO科学合作组织(LSC)的专家向全世界宣布,对于4000米的干涉臂来说,从手机信号到微波炉,然而,这次的波源是双黑洞并合所引发,或者0.0002到0.5次双黑洞并合信号;而在LIGO升级改造之后,它是唯一可以在高维时空中传递的波,2015年年初他访问加州理工学院陈雁北教授(参与LIGO项目的资深专家)时,但是,由这一对应曲线,这是对传统黑洞的角动量的经典研究方法,-3)。从WIFI到GPS,